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Standard cosmological model
Thermal history: early universe is hot 
dense plasma with small perturbations 
propagating as sound waves

At z ~ 1100, temperature is 3000 
Kelvin.  Free protons and electrons 
combine to form neutral hydrogen 
(“recombination”); universe becomes 
transparent.

Small perturbations grow via 
gravitational instability; get order-1 
perturbations at z~0.  Photons which 
have been freestreaming since z=1100 
are observed as the CMB.
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Standard cosmological model
Expansion history: scale factor a(t) evolves via Friedmann equation

Cosmologists’ parametrization:
H0 = Hubble parameter at
ΩΛ = ρΛ/ρtot

z = 0
z = 0at
z = 0at
z = 0at

(3 parameters since 
                                  ) Ωb + Ωc + ΩΛ = 1 Ωb = ρb/ρtot

Ωc = ρc/ρtot

H(a) =
d log a

dt
=

�
8πG

3
ρtot

�1/2

matter dominatedradiation dominated vacuum energy dominated
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In this talk, “standard cosmological model” means 6 parameters:

Perturbations: initial perturbations are “adiabatic”
ζ = time delay between constant density and spatially flat slicings

is a nearly scale-invariant Gaussian fieldζ

Each Fourier mode          is an independent
Gaussian random variable with variance

ζ(k)

�ζ(k)ζ(k�)∗� = Aζk
ns−4(2π)3δ3(k− k�)

(Scale-invariant corresponds to             ) ns = 1

nuisance parameter: redshift of reionization

{H0,Ωc,Ωb, Aζ , ns, zrei}
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CMB sky

monopole: blackbody, 2.7255 K

dipole: 3 mK, from motion of Earth

higher anisotropy: 100   K, “snapshot of universe at z=1100”

z = 1100

14000 Mpc

µ
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Planck

First data release: ~50% of the total data, no polarization
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Foreground cleaned CMB map 
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Spherical harmonic representation

Represent full-sky temperature in spherical harmonic basis:

∆T (θ,φ) =
∞�

�=2

��

m=−�

a�mY�m(θ,φ)

= “wavelengths per 360 degrees on sky”

is analog of Fourier transform on the sphere(∆T )→ a�m

�

� = 2 � = 10 � = 100
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Power spectrum
Standard cosmological model predicts: each         is an independent 
Gaussian random variable with    -dependent variance   

a�m

�

�a�ma∗��m�� = C� δ���δmm�

The power spectrum       depends on cosmological parametersC�

ΩΛ = 0.71
ΩΛ = 0.63
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Power spectrum
Main goal of Planck: test prediction of the standard model
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Power spectrum
Main result: Planck’s measurement of the power spectrum 

is fully consistent with the standard model
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Standard model constraints
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Deviations from standard model

Curvature −0.0071 < ΩK < 0.0060

2.79 < Neff < 3.84

−0.031 < dns/(d log k) < 0.002

r < 0.111

−1.38 < w < −0.90

Neutrino mass

No. of neutrino species

Primordial gravity waves

Running spectral index

Dark energy equation of state

Some 1-parameter extensions to the standard model
In all cases, the 95% confidence region includes the SM value

Primordial non-Gaussianity

−8.9 < f loc
NL < 14.3

−192 < f equil
NL < 108

−103 < fortho
NL < 53

�
mν < 0.230 eV
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1. Gravitational lensing

2. Inflation

3. Tension with standard model, or with other experiments
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Gravitational lensing

(exaggerated)

Apparent locations of CMB hot and cold spots are deflected by
intervening large scale structure

Deflection angles Unlensed CMB Lensed CMB
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“Lens reconstruction”
Intuitive idea: from lensed noisy CMB, reconstruct 
deflection angles, with statistical noise

Lensed CMB Lens reconstruction + noise
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Lens reconstruction

Consider a large (~10 deg) overdense region
CMB appears slightly magnified; acoustic peaks move to lower l

�

�2CTT
�

overdense region
underdense region

Leads to quadratic estimator for each Fourier mode of the lenses

dl =
�

d2l�

(2π)2
Wll�l��Tl�Tl−l�
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Unlensed CMB

Duncan Hanson
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Lensed CMB

Duncan Hanson

Typical lensing deflection: ~2 arcmin
Typical lens size:  ~few degrees
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Planck lensing: results
Maps of lensing potential     (deflection field is               )φ �d = �∇φ

Statistical noise is a factor ~few larger than the     fluctuationsφ

φ(n) = −2
�

dr

�
rCMB − r

rCMB r

�
Ψ(rn, r)Line-of-sight integral:

Newtonian potentialpeaks at z~2
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Planck lensing: results

≈ 2.5σ

Power spectrum Cφφ
�

25   measurement of CMB lensing!σ
(Previous measurements: ACT ~4  , SPT ~6  )σ σ
We can now do precision cosmology with CMB lensing...
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Planck lensing: results
Example: Planck measurement of curvature 

ΩKIn the unlensed CMB, varying either        or        mainly changes
the angular scale of the acoustic peaks, leading to a degeneracy

ΩΛ

CMB lensing breaks the degeneracy, allowing both        and
to be determined 

ΩΛ

ΩK

ΩK

ΩΛ = 0.71
ΩΛ = 0.63

ΩK = 0.016
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1. Gravitational lensing

2. Inflation

3. Tension with standard model, or other experiments
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Inflation: horizon problem
Surface of last scattering is nearly isothermal, suggesting that all 
parts of the last scattering surface were once in causal contact

However, the causal horizon at last scattering is much smaller:
points separated by           have never been in causal contact> 1◦

Drec = 14100 Mpc

Dhoriz = 250 Mpc

2.7252 K2.7248 K
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Inflation: horizon problem
(aH)−1 = comoving distance light travels in an e-folding

Evolution with scale factor    : a

d log(aH)−1

d log a
=

1 + 3w

2

radiation
domination

matter
domination
(w = 0)

(w = 1/3)

In a universe filled with 
nonrelativistic                
or relativistic
matter, the horizon is  
small at early times

(w = 0)
(w = 1/3)

slope = 1+3w
2

(w =
pressure

energy density
)
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Inflation: horizon problem

radiation
domination

inflation
matter

domination
(w = −1 + �)

(w = 0)

(w = 1/3)

To get a large horizon at early times,               expansion history
must be preceded by an “inflationary” epoch with                ,
i.e. negative pressure

slope = 1+3w
2

ΛCDM
w < − 1

3
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Single-field slow-roll inflation
Example model: scalar field     slowly rolling down potential V (φ)φ

Flatness: 

Negative pressure:

� =
M2

Pl

2

�
V �(φ)
V (φ)

�2

� 1

S =
�

d4x
√
−g

�
1
2
(∂φ)2 − V (φ)

�

w =
1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

≈ −1 +
2
3
�
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Generation of perturbations
Amazing fact: inflation naturally generates perturbations; 
microscopic degrees of freedom are quantum mechanically excited

First consider toy example as follows...
Exponentially expanding spacetime (de Sitter)

ds
2 = −dt

2 + e
2Ht

dx
2

=
1

(Hτ)2
(−dτ2 + dx

2)

(−∞ < t <∞)

(−∞ < τ < 0)

Minimally coupled massless test scalar field

S = −1
2

�
d
4
x
√
−g g

µν(∂µσ)(∂νσ)

=
1
2

�
dτ d

3
x

1
(Hτ)2

��
∂σ

∂τ

�2

− (∂iσ)2
�
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Generation of perturbations

Schrodinger equation                     is exactly solvable: 

ψ(x, τ) ∝ 1
(1− ikτ)1/2

e
−i kτ

2 −i k
2

x
2

2H2τ(1+k2τ2)

� �� �
exp

�
− k

3
x

2

2H2(1 + k2τ2)

�

� �� �

i
∂ψ
∂τ = Ĥψ

phase Gaussian

Early-time limit                     : system stays in ground state (adiabatic)(τ � −1/k)

Late-time limit                     : wavefunction “frozen” to constant value(τ � −1/k)

ψ(x, τ)→ ψground(x, τ) ∝ exp
�
− kx

2

2H2τ2

�

ψ(x, τ)→ exp
�
−k

3
x
2

2H2

�

Each Fourier mode        behaves as a 1D harmonic oscillator
with time dependent Hamiltonian  

σk

�H =
1
2

�
k

2

(Hτ)2
x̂

2 + (Hτ)2p̂2

�
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Generation of perturbations

Toy model, conclusion: In the late-time limit, each Fourier mode       
is an independent Gaussian with variance

σk

i.e.     is a Gaussian random field with scale-invariant power 
spectrum

σ

P (k) =
H

2

2k3

�σkσ∗
k�� =

H
2

2k3
(2π)3δ3(k− k�)
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Generation of perturbations
Inflationary model:
 

[with dynamical       ]gµν

“Scalar perturbations”: at the end of inflation, the adiabatic curvature          
     is a Gaussian field with nearly scale-invariant power spectrum ζ

where

For inflation to last for many e-foldings, first and second derivatives
of the potential must be small, which implies 

(ns − 1) � few× 10−2

ns − 1 = M2
Pl

�
2
V ��(φ)
V (φ)

− 3
�

V �(φ)
V (φ)

�2
�

Pζ(k) = Aζ

�
k

k0

�ns−4

S =
�

d4x
√
−g

�
−1

2
gµν(∂µφ)(∂νφ)− V (φ)

�
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Generation of perturbations
Inflationary model:
 

S =
�

d4x
√
−g

�
1
2
(∂φ)2 − V (φ)

�

[with dynamical       ]gµν

“Tensor perturbations”: at the end of inflation, there is a stochastic
background of gravity waves with power spectrum

r = 8M2
Pl

�
V �(φ)
V (φ)

�2

nt = −r/8

“tensor-to-scalar ratio”r =

For a “generic” potential,                which is detectable!r ∼ 0.1

.... but energy scale of inflation is                                         
so detectable r corresponds to fine-tuned energy scale ... ?                                          

Pgw(k) = rAζ

�
k

k0

�nt−3

(3× 1016 GeV)× r1/4
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Planck constraints
Many inflationary models can be compared to Planck data by
simply locating them in the             plane (ns, r)

Pζ(k) = Aζ

�
k

k0

�ns−4

Pgw(k) = rAζ

�
k

k0

�−3−r/8
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Planck constraints

Single field slow roll predicts dns/(d log k) ≈ 0
Planck constraint: −0.031 < dns/(d log k) < 0.002

2-2.5

(Weak) preference for negative running comes from “dip” at low l

σ
� = 20 dip

� = 1800 dip

Pζ(k) = Aζ

�
k

k0

�ns−4+ dns
d log k log(k/k0)

“Running” spectral index parametrizes deviation from power law

2.5-3σ
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σ̇3

Primordial non-Gaussianity

String-motivated model of inflation
(Alishahiha, Silverstein & Tong)

After a suitable change of variables, the effective action can be 
approximated as a massless scalar with a       interaction

small coupling constant

S =
1
2

�
dτ d3x a(τ)2

��
∂σ

∂τ

�2

− (∂iσ)2
�

+ fa(τ)
�

∂σ

∂τ

�3

Example model: DBI inflation

L = − 1
gs

��
1 + f(φ)(∂φ)2

f(φ)
+ V (φ)

�
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Primordial non-Gaussianity

To first order in f, non-Gaussianity shows up in the 3-point function
k1 k2

k3

DBI example:

Signal-to-noise comes from equilateral triangles

S =
1
2

�
dτ d3x a(τ)2

��
∂σ

∂τ

�2

− (∂iσ)2
�

+ fa(τ)
�

∂σ

∂τ

�3

�ζk1ζk2ζk3� ∝ f

� 0

−∞
dτ

τ2e(k1+k2+k3)τ

k1k2k3

=
2f

k1k2k3(k1 + k2 + k3)3

(∂σ/∂τ)3

Cosmologists’ terminology: f = f equilateral
NL
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Primordial non-Gaussianity

f local
NL = 2.7± 5.8

f equil
NL = −42± 75 (1σ)

forthog
NL = −25± 39

Models with self-interactions
of the inflaton (e.g. non-canonical

kinetic terms)

Planck: no evidence for primordial non-Gaussianity

Multifield models of inflation

Normalization:                 corresponds to deviations from Gaussian 
statistics of order ~(few            )

fNL ∼ 1
×10−5

Planck sees primordial fluctuations which are Gaussian to one
part in               , an extremely precise test of the predictions of
single-field slow roll inflation.

103–104
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1. Gravitational lensing

2. Inflation

3. Tension with standard model, or with other experiments
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Expansion history
Planck alone constrains the expansion history to ~1%, assuming 
the standard model.  Let’s compare to astrophysical measurements...

Baryon acoustic oscillations are very consistent
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Expansion history
There is some tension (at the ~1% level) with astrophysical
measurements of the Hubble constant H0

Planck: H0 = (67.3± 1.2) km s−1 Mpc−1

Cepheid-based measurements:

H0 = 73.8± 2.4
(Reiss et al)

H0 = 74.3± 1.5(stat)± 2.1(sys)
(Freedman et al)
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Neutrino mass
∆m2

ν

∆m2
31 = (0.049± 0.0012 eV)2

∆m2
21 = (0.0087± 0.00013 eV)2

�
ν mν

Neutrino oscillation experiments measure            between species

Current analysis of world data:

Cosmology is complementary: lensing is mainly sensitive to 

Cosmological upper limit (Planck + WMAP-pol + ACT/SPT + BAO):

(95% CL)

Minimum mass is ~0.06 eV; we are approaching the guaranteed signal

�
mν < 0.230 eV
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Number of neutrino species
2.79 < Neff < 3.84 (95%, CMB + BAO) 
3.14 < Neff < 4.12 (95%, CMB + astrophysical      ) H0

3.07 < Neff < 4.00 (95%, CMB + BAO + astrophysical      )H0
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Tension with low z?
Compared to some recent experiments which measure growth of
structure at low z, Planck prefers

• High         (                                   )
• Low Hubble parameter  (                                 )
• Large matter fluctuations (                                 ) 

Ωm

h = 0.678± 0.0077
σ8 = 0.829± 0.012

E.g. CFHTLS (gravitational lensing of galaxies) finds

Ωm = 0.308± 0.010

Ωm = 0.255± 0.014
h = 0.717± 0.016

(CFHTLS + WMAP7)

which is discrepant at the 3-4   level σ

Saturday, April 6, 2013



Tension with low z?

Internal discrepancy: using the Planck maps, one can count galaxy 
clusters, via the Sunyaev-Zeldovich effect (Compton scattering of 
CMB photons by hot electrons).  This constrains the combination:

σ8(Ωm/0.27)0.3 = 0.79± 0.01 (Planck SZ)

But the Planck CMB measurements give

σ8(Ωm/0.27)0.3 = 0.87± 0.02

which is discrepant at ~3σ
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Conclusions
• Planck significantly improves constraints on all cosmological 
parameters and is a huge step forward
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• Main goal: to test whether the standard cosmological model 
holds up when CMB is measured to much better precision
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Conclusions
• Planck significantly improves constraints on all cosmological 
parameters and is a huge step forward

• Main goal: to test whether the standard cosmological model 
holds up when CMB is measured to much better precision

• Conclusion: standard model is still a good fit

      
     

... assuming that some tensions with other datasets can 
be resolved (e.g. growth of structure at low z) or are 
statistical flukes that will go away with more data
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Conclusions
• Planck significantly improves constraints on all cosmological 
parameters and is a huge step forward

• Main goal: to test whether the standard cosmological model 
holds up when CMB is measured to much better precision
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• What’s next?
      We are running out of modes in CMB temperature
      
     

... assuming that some tensions with other datasets can 
be resolved (e.g. growth of structure at low z) or are 
statistical flukes that will go away with more data
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Conclusions
• Planck significantly improves constraints on all cosmological 
parameters and is a huge step forward

• Main goal: to test whether the standard cosmological model 
holds up when CMB is measured to much better precision

• Conclusion: standard model is still a good fit

• What’s next?
      We are running out of modes in CMB temperature
      CMB polarization is an interesting frontier (statistical errors
         on r should improve by ~10 in next few years)
     

... assuming that some tensions with other datasets can 
be resolved (e.g. growth of structure at low z) or are 
statistical flukes that will go away with more data
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Conclusions
• Planck significantly improves constraints on all cosmological 
parameters and is a huge step forward

• Main goal: to test whether the standard cosmological model 
holds up when CMB is measured to much better precision

• Conclusion: standard model is still a good fit

• What’s next?
      We are running out of modes in CMB temperature
      CMB polarization is an interesting frontier (statistical errors
         on r should improve by ~10 in next few years)
      Large-scale structure: expansion history and growth at low z

... assuming that some tensions with other datasets can 
be resolved (e.g. growth of structure at low z) or are 
statistical flukes that will go away with more data
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